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TEERMODYNAMIC CHARTS FOR THE COMPUTATION OF FUEL QUANTITY 7

REQUIRED FOR CONSTANT-FRESSURE COMBUSTION WITH DILUENTS
By Donald Bogert, David Okrent, and L. Richard Turner
July 1948 _ -

The page—size version of flgure 6 was incorrectly pr;epared. for
reproductlion; the corresponding large-—size chart enclosed in the back
of the report was, however, prepared correctly.

The ordinate label of figure 13 was incorrectly listed nitrogen—
air ratio instead of oxygen-air ratio.
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WIND-TUNNEL TESTS AT LOW SPEED OF SWEPT AN.D YAWED
WINGS HAVING— VARIOUS PLAN FORMS

By Paul E. Purser and M. Leroy Spearman
SUMMARY

Wind-tunnel tests of an exploratory nature have besn made at
low speed of varlous small-scale models of swept-back, swept-
forward, end yawed wings. - The tests covered changes in aspect
ratio, taper ratio, and tip shape. Soms date were obtained with
high=-11ift devices on swept-back wings and with allerons on swept~
forward wings. The data have been briefly analyzed and some
compariasons have been made with the available theoxry.

The results of the tests and the analyses indicated that the
values of lift-curve slope and effective dlhedral of swept wings
can be computed with a reasonsble degres of accuracy in the low-
lift~coefficilent range by means of exlsting theories.

In general, reducing the aspect ratio and the ratioc of root
chord to tip chord resulted in increases in drag and effective
dihedrel and Increased the longitudinal stability near the stall.
Cutting off the tip of & swept-back wing normal to the leading edge
reduced the effective dihedral at low 1ift coefficients and gave
a slight reduction in the drag at high lift coefficients. Sweeping
forwerd a part of the oubter panel of & swepb-back wing improved the
longitudinal stabillity and decreased the effective dihedral bubt also
glightly decreased the maximm 1lift coefficient and lncreased the
drag at high 1ift coefficients. The use of high-1ift devices at
elther the leading edge or the trailing edge of swept-back wings
increased the lift-drag ratlo and the effective dihedral at high
11f%t coefficlents. An increass in the ratio of root chord to tip
chord. for swept-forward wings gave decreases in alleron rolling-
moment effectlveness that were greater than the values computed for
unevept wings. o _ S _ .

INTRODUCTION
Much interest in the use of highly swept wings has arisen since

the theory of reference 1 indicated the increases in flight critical

RESTRICTED
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Mach nuwmber that could be obtained by the use of sweep. The effects
of sweep on the low-speed characteristics of wings have long been
recognized end theory (reference 2) indicates that the effects may
be rather large. Some sxperimental data on wntapered swept~beck
winge are provided in reference 3. The present paper reporis tests
made ¢én various swept end yawed wings as an extension of the work
of reference 3 to include the additional effects of taper ratic and
sweepforward and to provide date for comparison with the theory of
reference 2. , -

COEFFICIENTS AND SYMBOLS

The results of the tests are presented as stendard NACA coefficilents
of forces and momeérnts which are referred in-all cases to the guarter-
chord point of the meen aerodynamic chord of the model tested. The
data for the swept-wing tests are referred to the stebility axes’

(fig. 1(a)), and the date for the yawed-wing tests ave referred to
the stability axes and to the wind axes (fig. 1(b)).

For the stabllity axes the coefficients and symbols are defined
a8 follows:

¢, . 1ift coefficient (I-_i_gﬁ vhers Lift = -z)
g

C maximum 1ift coefficient : e
Loax '
Cn yawing-moment coefficient (I ' '
qsSp
CX longitudinal~force coefficlent (.%)
q

Cy  lateral-force cosfficient ( J.f_)
qs
c, rolling-moment coefficient (._L...)
: gSh

Cn pitching-moment coefficient (_SM_T)
qSc

X force along X-axis, pounds — —

Y force along Y-axls, pounds
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force along Z-axis, pounds
rolling moment about X-axis, pound-feet -

pitching moment gbout Y-axis, pound-feet

2 B 0 N

yawing momerit about Z-axis, pound-feet

For the wind axes the coefficients and symbols are defined as
follows: . _ L

Cp drag coefficient (D_!‘.é!ﬂ where Drag = -X') "
. q o

t-

X' force along X-axis, pounds

Y' force a;lc;ng Y-axis, pouﬁd_.s

Z force along Z-axis, pounds

L' rolling mement about -X-axis, powmnd-feet
M! pitching moment about Y-axis, ﬁoﬁnd-éee_t
N yewing moment @bout Z-axis, pound-feet

Other sym'bo-ls are defined as follows:

A aspect ratlo (b?.)
S
072
q Pree-stream dynamic pressure, pounds per square foot -/
8 °  wing area. . ' _ oo
c alrfoll section choi'd, medsured in flight direction -
b /2

c' wing mean aerodynamic chord g- J c® dy

T 0 /
b wing spen

¥y distance along wing span
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v air velocity, feet per second — o T
o] mass density of alr, slugs per cuble foot __
-3 angle of attack of chord line in stebility-exis
XZ-plene, degrees
al angle of attack of chord line in wind-axis
X'Z-plane, degrees
r angle of yaw, degrees
A angle of sweep of airfoll leading edge, positive for
sweepback, degrees
A’g angle of sweep of quarter-chord line, positlive for
L sweepback, degrees
T angle of dihedrel, degrees
A taper ratio (Egg&ughggi
Tip chord
Bp flap deflection, measured in flight direction, degrees
S alleron deflection, measured in flight direction, degrees
B asrodynamic~center 1d¢atioﬁ, percent mean asrodynamic chord
Subscripts:

LO conditions for zero 1lift - . . . _ R

Syrbols used as subscripte denote vartial derivatives of coefficlents
with respect to angle of yaw, angle of attack, flap deflection,
alleron deflection, and 1ift coeffiolent. For.exemple,

\;,) aCL (5‘1’ )
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MODELS

The models, which were mshogeny wings used in previous investi-
gations in the Langley T- by 10-foot tunnel, are 1llustrated in
figures 2 and 3. The models having conventional taper were of
NACA 23012 airfoil section in plenes parallsl to the origlnal planes
of symmetry. The untapered models were of NACA 0012 and NACA 0015 air-
foil section in planes normal to the leading edges. The model having
inverse taper had low-drag-type alrfoll sectlons, the ordinates of
vhich are given In teble I. The wing tips were failred on only the
inverse-taper model. The full-span split flap tested on one of the

untapered swept-back models was of ilg-inch steel and had a chord
equal to 25 percent of the wing chord. ‘'he half-span split flep
tested on the inverse-taper model wasg of %‘—-mch Masonite and had

chords equal to 20 percent of the airfoil section chord. The nose
flap (or slat) tested on the inverse-taper model was of NACA 22 airfoil
gection (reference 4) in a plane normal to its leading edge and had a con-

stant chord equal to 8%‘- percent of the average chord of the part of the
wing @).368— to 0.952—) over vhich the flap (or slat) was located.

Test Conditlons

The tests were made in the ILangley 7- by 10-foot tunnel at
dynamic pressures of 16,37 and 9.21 pounds per square foot, which
correspond to airspeeds of ebout 80 and 60 miles per hour, - )
respectively. The test Reynolds numbers (fig. 4) ranged from ,
620,000 to 1,250,000, the value depending on the dynamic pressure
and on the mean asorodynamic chord of the model tested. Bsecause of
the turbulence factor of 1.6 for the tunnel, ‘the effective Reynolds
nunbers (for maximmm 1ift coefficients) ranged from 992,000
‘o 2,000,000 (fig. 4). .o

Corrections
Date for only the inverse-taper model hav.e been corrected for

teres caused by the model support strut. No tare data were obtained
for the other wing models because experience has shown that for the
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The date are presented in figures 6 to %3 in three general
groups ~ force-test data, tuft sketches, and comparison plots ~ and
are indexed in table II. :

THEORETICAL, RELATICNSHIPS

The basic theory for swept and yawed wings as. developed by
Betz (reference 2) is based on the concept that only the component
of velocity normal to the wing leadlng edge determines the chordwlses
pressure distribution. Among the simplifying assumptions mads by
.Betz are: The spanwise load distribution is rectangular, the two
semispans of a swept wing may be considered independently as yawed
wings, and the wing is swept by first setting the panels at an
engle of attack and then sweeping the wing in such a manner that the
leading edges of the panels remain in a horizontal plane. The las?t
agsumption, since i1t introduces a geometric.dilhedral, primerily
affects the rolling moments, and, since maintaining the panel leading
edges in a plane is not & practlcal arrangement, & series of
squaticns was developed from Betz's work without such an assumption.

The normal-component~of~velocity concept and the assumptioms
of independent semispans and rectangular span loading, however, were
reotained in the development of the following equations, which are
not all used in the. present paper but are presented for future
reference: ’

Yawed wings:

c. =fc 2 e (W)
I'oz. (Ld)w:ocosx[r

c. ={c ={c (2)
! (L“wa = <L°>w=o ?OS?

c. =/¢C cos® - (3)
ER <La f> v |
=0 .

‘(.,.-
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Swept wings wlthout flaps or camber:

CI‘a. = (CLQ cos A cosa\[; ' (&)

A=Yr=0
CLcc' (CL ) . cos A cos . | _ : .(5)
: A =\ =0 ’
CZ = %;.CL 'ba.nA tan \§r+ %Cr‘a, ten I‘- tan Y EE (6)'.
c ~ooolm (CLta.nA+C ta.nI’) (7)

( > cos cosaq; (8)-.
=Y =0 '

Swept wings with full-span fleps or camber:

C;, = cos A cos®y  (flaps) (9-).
¢ (LSQA -
= =0 |
(CL)a,=o = (CL)a,:A-:\ZI:o COSQA, cos?y (cember) (20)
o (i) _y o ' o
3 ﬂ *

°z='21'(CL ten A ten ¥ "o tan A ten § sin ap
a=0 s -

+ %_CLG 'banl".tanlef + % [CL - (CL)a_—o ten A tem § (12)



* Page 8, equations (6), (7), and (12) should read

Oy = $0r, ten A ten ¥ + Zhedop tenT tan ¥y
Cqy ® 0.0044(Cp, tan A + 57.3 Cp_ ten T
1y (o ™ )
¢y = (1) 4 tanAtan¢+Z71ficLatanrtanw

+ %E}L - (CI‘)c:O] tan A ten ¥

——cay

(®

(7)

(12)
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C. % 0.0087 (c

7'\;; I') a=0

+ 0.00kkCy  ten I' +o.ooquL - (CL) _0] ten A (13)
. - o =

tan A ~ O.OOIIJLCL tan A sinaLO
@

or 8ince
G in = X . 1h
La = I, (CLL:o 57 3 : (1)

¢, =o0.004k|{c ten A + C, temT + C. tan A 1
Z\If R L)cc:O - Lo G (5)

Equations (1) to (15) take no account of aspect ratio and
taper ratio. For 1lift and ailleron effectiveness these factors may
be accounted for approximately in several ways as follows:

(1) By use of standard corrections with the aspect ratio and
taper ratio based on an u.nswept wing having the same panels as the
swept wing (reference 3)

(2) By use of charts developed by Mutterperl (reference 6)
vhich give the span loadlng and total lif'b of swept~back wings
calculated by a method based on Weighardt's extension to lifting-
line theory (reference T)

(3) By uss of lifting-surface-theory computations (reference 8).

For effective .dihedral, in order to account for aspect ratio and
taper ratio, the following items may be noted:

(1) Equations (7), (13), end (15) actually provide only
increments in Cl\l’ caused by sweep and dihedral
(2) The basic values of Cl may be obtained from Weissinger

(reference 9) by using the values of aspect ratlio and taper ratlo
actually existing on the swept wings.



- Page-9, equations (13), (1), and (15) should read

11;[01. - (CL)G,_-o] tan A

57.3

1
ty 57.3

A
+3—;CIu'ba.'ﬂ.F+

Gy, ® 0.0087(Cr)__, ten A + ]]:CLG tan I

+ 0.004kCy tan A - 0.0011-11-(01,)‘:,'__-o tan A

tanA+57.3CLmta.nI'+CLtanA:|

Cz‘lf 2 0,004k (CL)a,_—O
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DISCUSSION

Longlitudinal Stability of Swept Wings

Effect of aspect ratio.~ As has besn shown in references 3
and, 10, the pitching-moment curves bscome increasingly nonlinear
a8 the sweep angle 1s Increased and tend to bscome umstable near
the stall. Decreasing the aspect ratlio generally reduces the
nonlinearity and tends to meke the pitching-moment curve sitable
near the stall. (See figs. 6, T, 9, and 36 for example.) The
data for all the wings 1ncluded. in the present investigation,
both swept-back and swept-forward, agree very well with the
pummery chart of referencell as to the effects of sweep angle and
aspect ratlio on the pltching-moment charscteristlcs neer the stall.
As shown in figure 36, increases in aspect ratio moved the sero-
dynamic center at low 1ift coefficlents slightly back for the
unswept and swept-forward wings and slightly forwerd for the swepti-
back wings.

L:ffecﬁ of taper ratio.~ In agreement with the data of reference 10,
the preesnt investigation showed little or no effect of taper on the
pltching-mament characteristics nsar the stall for swept-back wings.
(See £igs. 13 and 14.) For swept-forward wings, kowever, increasing
the ratio of root chord to tip chord provided a slight stabilizing .
effect on the pltching-moment curve near the stell. (See figs. 26
to 28.) Increases in the ratio of root chdrd to tip chord moved
the aerodynamic center at low 1ift coefficlents back for swept-back’
wings, very little for unswept wings, and forward for swept-forward

wings. (See Pig. 37.)

Effect of higp_-lift devices.- The use of a full-span split flap
at the trailing edge or of & spoller extending from the nose on an
untapered 60°-swept-back wing (figs. 7, 5, end 38) had little
effect on the pitching-moment curve except for a change in trim
produced by the trailing-sdge flap. For the .inverso-taper swépt-
back wing (figs. 14 end 38) the use of a helf-span center-section
split flap at the treiling edge and a half-span tip slat or flap
at the leading edge = elther separately or in combination - delayed.
the excesslve stabillty at high 1lift coefficients and had little
effect on the stabllity at low 1ift coefficlents. All combimatlons
oroduced some changs in tirim, and in the order of increasing the )
negative value of Cp at Cp = O the devices are: leading-edge -

slat, tralling-edge flap, tralling-edge flap and leading-edge slat,
trailing-edge flap end leading-edge flep, end leading-edge flap. .
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Effect of tip modification.- Cutting off the tip normal to the
leading edge on an untapered 60° swept-back wing had 1ittle effect
on the nonlinearity of the pitching-moment curve or on the stabiliiy
near the stall (figs. 6 and 10) but did move the aserodynemic center
back at low lift coefficients (fig. 39). When the outer 4O percent.
of the wing panels was swept forward. however, the pitching-moment
curve became nearly linear and indicated stebility near the staJ.l.
(See figs. 6, 11, end 39.)

Effective Dihedral of Swept Wings

Effect of aspect ratio.- For unswept wings the slope of the
curve of - C; against C; 1s Increased positively as the espect

ratio is decreased. (See reference 9 and Pig. 36.) The same effect
is shown in figure 36 for untapered ewept-back wings. Although
insufficlent date are-avalleble to show directly the effectes of aspect
ratio on [C, ) for swept-forwa.rd. wing_s, the agreemen‘b between .

Cy, . :

eXperiment and. calculation shown in the section entitled Compariscn
with Theory supports the argument that aspect-ratio effects on

Cz) aré independent of sweep. The maximum value of CZ\IJ for
o,

v
the swept-back wings (fig. 36) was increased slightly as the aspect
ratio was reduced.

Effect of teper ratlo.- According to the calculations of
Welssinger Zreference 9) an increase In the ratio of root chord to

tip chord sh_ould. give a reduction in the positive valve of ('}2 .

That this result is true is Indicated by the date of figure 37 for
both swept-back and swept-forwerd wings. The apparent discrepancy
for the unswept and for the approximately unswspi wings (fig. 37) is
attributable to the fact that the tapered wing built with a straight
trailing sdge had enough sweepback to counteract the small taper-
ratlo effect. For swept-back wings, increases in the ratlo of

root chord to tip chord apparently increased the meximum positive
value of CZ " and the 1lift coeffilcient at which this meximum valus

- Y ' .

occurred.

Effect of high-1ift devices.- The data of Pigure 38 show that
the use of high~1ift devices cen greatly increase the maximm values
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of C; obtained with swep‘c-back wings., The use of a full-epa'n

¥, - . N
gplit flap at the trailing edge of an untapered wing having 60°
sweepback gdve an increment in the value of CZ\" at CI. =0,

an increment in the maximm value of C, , and en increment in

the value of CI. at wvhich the maximwm value of GZ occurred.,
r

For the Inverse-taper swepi<back wing, a he,if-epan center-section

split flap at the trailing edge produced practically no chenge in.

the valus.of C, at Cy =0, .probably because gt Cp = 0 -the’
v )

wing tips were carrying a negabtive load; this load In tuin produced .
a negative value of C2 to covnterac’c the posi'b:?ve increment 3

W

provided by the flap. The use of the flap did, however, extend the
curve of C, enough to produce an apprecia.ble increase in the

e . “I} : el T .. . ]
maximum value of C?,W and in the lif'b coefficient at which ﬁhe Co

maximum value of CZ occurred.. For the mverse--te.per ewept-back

wing the use of the half-span tlp-section 1eading -odge slat
(or flap) - either aslone or in combination with the trailing-edge
flap - resulted. in 1ittle change in 'bhe value of CZ at Cp. = Q

v

but did increase ‘the maximum va.lue of GZ and. the 11ft coefficisnt
: i}

at which the maximim value occurred, probebly because the leading-

edge d.evicee improved the flow over the tips at high 1ift coefficients.
The use of full-spen and half-span tip-section nose spoilers extending
forward from the chord plane on the 60° swept-back wing apparen’oly
lmproved the flow conditions over the wing outer pemel and elightly
increased the meximim value of Cy »

w
Effect of tmmodizicgtl% - Cutting off the tip normal to the o
leading edge on an untapered swept-back wing reduced the slops _

of the curve of C?w- e.gainst CL at low lif'b coefficients but did
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not change the meximm value of CZ\V . Sweeping forward the ouber
40 percent of the span, however, marked.ly reduced 'both (07‘\!‘)

end the maximum value of Czw- (See fig. 39. )

Induced Drag, Meximum Lift, and Stalling of Swept Wings

Effect of aspect ratio.- Curves in figures 19 and 36 indicate
the effect of aspect ratio on the induced drag, the maximum 1ift,
and the stalling cheracteristics for unswept straight wings.
Reducing the aspect ratio from 6 to 3 increases the drag, since the
induced dreg varies inversely as the aspect ratlo. A reduction
in G occurs ag the aspect ratio 1s decreased. al'bhough the

stall angle is higher for thie lower aspec'b re:bio.

Wings swept back 30° (fig. 15) ‘show generaJ_'Ly the seme effect
as unswept stralght wings. When the aspect ratio is reduced from
5.2 to 4.5, en increase in drag and a reduction in Cp occur.

Wings swept back 60° (figs. 6, 7, 9, and 36) also show an increase
in drag as the aspect ratio is reduced in the lower lift-coefficient
range, but at higher 1ift coefficlents the drag of the wing with
the smaller agpect ratio is less than that of the wing with the
higher aspect ratio. The same effect was obtalned in tests of 60°
swept-back wings in the Langley 300 MPE 7~ by 1lO-foot tunnel
(reference 11). The higher drag of the wing with the larger aspect
ratio is probebly caused by the spanwise flow toward the tips of
swept~back wings; this flow resulbs in a thlckenirg of the boundary
leyer and causes separated flow over the wing. This condition
apparently beccomes more aggravated at the higher sweep angles as the
span is increased &nd 'results in a drag 1ncrement large enough to
offset any decrease in induced drag caused by increasing the aspec'b
ratio.

Aspect-ratio changss heve a normal effect on swept-forward
wings, as seen in figures 25 snd 34. The effect is similar to that
for unswept and for 30° swept-back wings, but the increase in drag
end the loss in CImax with decreases in aspect ratio appear larger

for the swept-forwerd wings.
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Effegt gf taper ;_'atio. Fbr unswept wings figure 37 shows

that an increase of taper ‘reduced the induced drag, but the apparent
increase in (':Ihla f‘or 'bhe wing with a taper ratdo of 3.0 is
b d
probably a false effect since the tapered wings are cam'bered
(NACA 23012) airfoll sections whereas the untapsred wing is uncambsred,
Comparison of the tapesred-wing dats with data on & vectangulay
NACA: 23012 -airfoll section (reference 12) shows no effect 6f taper
on CI 4s the wings are swept either forwarcl or back the favor-

a’ble effect of increassa. ra,tio Qf root chcrd to ‘bj p chord An reducing
the induced. drag becomes quite large.-- o T

Tuft sﬁuaies of the - swapt—back Wings (fig. 35) 1ndicate that.
the stall paftern is gimilar to that cbesrved ¢n other swept~back
wings et low Reynolds numbers. At moderate 1lift coefficients a
region of disturbed flow occure on the leading edge, then the tip
stalls and the stall moves.progressively towerd .the center section.
Changes in’ taper ald not appreciably affect the general pattern of
the stall. - , P e L , = -

- Effect of b of high-13ift devices.- The wse of full-span split f£laps
- on . the. trailing edge of -an untapered 60° :swept-back wing (fig. 7T)
increaseﬁ CLm; only sJightly but did reduce the angle ‘of attack

Ffor, CI . The d.rag was increased over most of- the lift-coefficient

range a.nrl bspame less than for the plain wing only slightly below
ULma The full-span nose spo;ller tested on ihe 609 swept-back wing

(fige: 8) gave a slightly 1arger incremen‘t of CI . then d4id the

_ sp],it flap but 1ndica’ced. no change in the stall ang'Le. The drag was
"Incressed up to e 1ift coefficient of about 0.6-but was less then the
drag of the plain wing above, Cy, = 0.6. i

Deflecting a half-sven split flap on the trailing edge of a
37.59. swept-back wing (fig. 1b) or adding oilther a leading-edge
slat or flap on' the tip Increassd Cy, o Deflecting t‘he flap”

‘ :anrea.sed theé dreg up toe 1ift, coefficient 01’ 0.65 and then gave .-
"less dreg them the plain wing up to (g The addition of either

the leading-edge slat or flap further reduced the drag from a 1ift
coefficlent of 0.65 up to Cq The addition of either the leading~

edge slat or flap with the trailing-edge flap \mdeflected. reduced
the drag in the higher 1lift range by an emount about equal to that
caused by deflecting the tralling-edge flap alone. Deflecting the
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snlit flap had 1ittle effect on the stall pattern but use of the
tip slat considerably delayed the stall at the wing tip (figs. 35(c)
and 35(d)). e

Estimates based on aileron data (fig. 30) were made to
determine the effectivensss of a split flap on the tip of swept-
forward wings. The increment of lift at o = Q for.the half-span
split flap on the tip of & U5° swept-forward wing was slightly
greater then that for an inboard half-span .split flap on a 45° swept-
back wing (reference 3) and almost twice as great as that for en
outboard helf-span split flap on a 45° swept-back wing (references 3
and 13). ILittle difference was noted in the incremsnt of . Cr

provided by the split £lap on swept-forverd and swept-back wings.

Effect of tip modification.- Cutting off the tip of a swept-
back wing normal to the leading édge caused a reduction in drag from
a 1ift coefficient of 0.50 up to maximum 1ift since the taper
ratio was effectively increased (fig. 39) ‘Sweeping the outer -

40 percent of the wing forward increésed the drag from a 1ift
coefficien'b of 0.80 to CI'ma end slightly reduced Cp , Pprobably

because of the increased interferénce between the swept-forwvard end
the swept-back panels.-

Alleron Effectiveness for Sw'e'pt-Forwa.rd. Wings

Data for two 45° swept-forwerd wings of taper ratio 1.0 and 4.0
equipped with half-span split-flap-type 0.20c allerons deflected on
the left wing only are presented in figures 30 and 33.

Comparisons which accounted Por the relative effectiveness of
plain and split flaps (reference 13) indicate that the aileron
effectiveness CZS at a 1ift coefficlent of 0.2 for the 45° untapered

a :
swept~forward wing was sbout 10 percent greatey than the value that
would be obtained for the 45° untapered swept-back wing of reference 3.
This result is probably caused by the thimnmer boundsry layer and the
less turbulent flow existing on the tips of swept-forward wings.

The date showed that the loss in aileron rolling-moment
effectiveness resulting fram increased taper was greater for the
swept-forward wing than the loss indicated for unswep'b wings in
reference 1h.:
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COMPARISQV WITE THRORY
Yawed-Wing Lift-curve S:Lope

" The tests of the yawed wings were made primarily to provide
& relatively quick preliminary check on Betz's concept of the
effect of yaw cn the lift-curve slope (reference 2). As shown by
figure. 40 the date for the NACA 0012 wing of aspect ratioc 6
agreed almost exactly with the cosine law. Tests of an NACA 0012 wing
of espect ratio 3, however, showed less effect of yaw on Or_n

than is' indicated by the cosine law. In an effort to explain the
discrepancy, teste were made of two flat plates having aspect

ratlos &f 3, one rectangular and-one-of Infinite taper. As shown

by figure 40 the infinite-taper model showed rore effect of yaw then

the cosine law and the rectangular plate ghowed-less offect. Additicmel
testsr of & flat plete having an aspect ratio of 1.27 showed an increase
roather than a dscrease in CI‘a.' ag the model was yawed. These

results may be pertly explained by the fact that as a rectangle is
yawed .the span normal to the air-stream direction - and thus the
aspect ratio - Increasses for part of the yaw range. The amount of
increase end the angles of yaw over which this increase appears ere
functions of the aspect ratlo end the taper of the basic model.
Corrections applied on this basis indicate that all the data would
group about the curve for the infinite-taper plate having an aspect
ratio of 3. The resulting curve showed a slightly greater effect of
yaw than ig indicated by the cosine law. - :

Swevt-Wing Lift-Curve Slope

The data of reference 3 indicate that in the computation of the
lift-curve slope of swept wjngs the cosine law 18 valid provided the
espect ratlo used is that of ‘an unewept wing having’ the’ same panels
as the swept wing. On this basis and by use of the 1lifting-surfaca-
theory equation for the lift-curve slope (reference 15) figure 4l
vas derived. By use of figure 41 and a value of 0.099 for the
section lift-curve slope the values of OL' were computed for all

the swept-wing testa. The measured end the computed values of OLm

are shown in figure 42. The agreement is reasonsbly good but
Indicates, as did the yawed-wing date, that the cosine law does not
indicate quite enough drop in CL s A 18 increased.
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Swept-Wing Effective Dihedral

In the calculation of the effective dihedral the seme procedure
was followed g8 in reference 3 except that the aspect ratlo and
taper ratio as well as the sweep were accounted for by obtaining

c, fram the following formula of Welssinger (reference 9):

w%Aw

2
o

57 .3 57 BCL. = 57. flg} 2K[+ 2-39{/\. - _.:)]'- O.l? (16) o i

Reference 9 states that the constant K is Indsterminate but .
depends on the wing-tip shape and is probably of the order of magnitude
of unity for square-cut tips. The data for the NACA 0012 airfoils
having aspect ratios of 3 and 6 were used to evaluate K eand a

valus of 0.78 was obtained.

The values of (CLQC for the models tested In the presemnt
L

investigation were computed by using K = 0.78 and equations (15)
and (16). Figure 43 shows the remasrkebly close agreement obtained
between the measured and the computed values.

CONCIUSIWS

The results of low-speed tests in the Langley T~ by 1l0-foot tunnel
of several small-scale models of yawed and swept wings indicated the
following conclusions:

1. The lift~curve slope and the effective dihedral for swept
wings can be computed with & reasonsble degree of accuracy in the
low lift-coefficient renge by means of sxisting theories.

2. In general, reducing the aspsct ratlo and the ratio of root
chord to tip chord produced increases in drag and effective dihedral
and slightly increased the longitudinal stabillty near the stall.

- -

3. Cutting off the tip of a swept-back wing normal to the leading
odge reduced the effectlve dihedral at low 1lift coeffliclents and ggve
g s8light reduction in the drag at high 1ift coefficients.



Pag. 1T, equation (16) showld read _ _ e~ -

a C -
57 1 _ 57 ZK{l + 0.15(0 l)l 0.10 16
. — ] C — - .
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WIND-TURNEL TESTS AT 1OW SPEED OF SWEPT AND YAWED
WINGS HAVING VARTIOUS PLAN FORMS
By Paul E. Purser and M. Leroy Speszyman
May 22, 1947

An error has been found in Welssinger's formula (reference 9)

which has been corrected in the followlng reference:

Weissinger, J.: Ergénzungen und Berichtigungen zur Theorie
der schiebenden Fliigels. dJahrb. 1943 der DVL, E.V. (Berlin—
Adlershof ), TAC21, pp. 1-6. :

Page 17, equation (16) should read
d°¢

. 1_ - 2Kl + 0.15(0 = 1) | _ 4 6
57.3 5v 30, 57.3(01\0CL = 0.5 A[ = ] .10 (16)

The factor 0.5 converts the formula from terms of semlspans as used by
Welssinger to spans. With the formmla in the corrected form the
factor K should be change from 0.78 to 1.51 (see p. 17, lines 11
end 13). The foregolng equascion (16) supersedes the correction to
equation (16) in the previous errata of this paper.
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4. Sweeping forward & part of ‘the ouber panel of a swept-back
wing lmproved the longitudinal stability and decreased the seffective

dihedral but also increased the drag at high 1ift coefficients and
slightly d.ecreased. 'bhe m.a::dmum lift coefficient.

5. The use of either leading-edge or 'bra.iling-edge high~ lif'b
devices on swept-back wings increased the lift-drag ratio and ths
effective dihedral at high 1ift coefficients.

6. An increase in the ratio of root chord to tip chord on a
swept-forward wing caused decreases in sileron rolling-moment

.effectiveness’ 'that were grea'ber than the losses compu'bed for unswept
wings. ‘..

Langley Memorial Asronesutical Ieboratory

Natlonal Advisory Committee for Aeronau‘bics
_ Langley Field, Va..

© e
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TABLE I

ATRFOIL OPDINATES MEASURED (N INVERSE-TAPER MODEL

[Chordwise stations and ordinates given in percent of airfoll-section chord.]

21

Spanwise statiomn
Chordwise 21.25 in. right of 21.25 in. left of
gtation Center line center line conter line
Upper surface | Lower surface | Upper surface | Lower swrface | Upper surface |Lower surface

o o 0 - o ) 0 0
15 «90 482 oT2 «65 19 65
1.25 1.12 ,+98 94 82 98 84
2.5 1.55 1.28 1.32 1.10 1.40 1.35
5.0 2.21 1.73 1.5% 1.55 1.99 1.65
75 2.65 2 06 2,40 1.90 245 2.05
10 3.03 2.30 2.77 2.20 2.83 2,35
20 k.00 2.83 3470 2.90 3.89 2.93
30 k.55 2.95 ka3 3.21 L.k 3.21
ko ;.68 2.92 4,26 3.15 L6 3.17
50 4,53 2.73 4.25 2.99 k.35 3.01
60 3498 2.48 3.80 2.66 3.90 2.66
10 3.07 135 3.08 2,16 3.17 2.02
80 2.07 1.32 2.15 1.50 2.19 1.52
90 1.05 1T 1.10 A0 1.12 15

100 o 0 0 0 ) )

NATIGHAL ADVISQORY

COMMITTEE FOR AERONAUTICS
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TABLE II ' -
INDEX OF FIGURES -

Ag |Aspect ratlo | Taper ratig, Model confignretion and test
¥odel L A PN Alrfoll section conditions 1gurs
(2eg)
Force-test data
1 60 2.6 1 WACA 0012 ¥ = 09, 50 6
2 60 1.5 1 NACA 0012 ¥ = 00, $50; wing + eplit flap 7
2 60 1.3 1 KACA 0012 ¥ = 00, 50; wing + nose spoiler 8
3, 4 | 6 3, 15 1 NWACA 0015 ¥ = 0° 9
5 60 3.1 1 NACA 0012 ¥ = 0°, ¥50; ont-off tips 10
[ t60 2.6 1 RACA 0012 ¥ = 09, 150; swept-forvard 1
outer pansls
7 56 2.1 2.5 RACA 23012 ¥ = 00, t50 . 12 ~
8 37.5 3 2,0k KACA 23012 ¥ = 00, ¥50 13
9 375 3 0.617 Tov-draf-type |¥ = 00, $59; faired tip; split ik
flap; noss slat and flap
30, 11 30 5.2, 3.5 1 NACA 0015 ¥ =00 ) 15
12 1 6 3 WACA 23012 ¥ = 00, 150 16
13 6 6 5 WACA 23012 ¥ = 0° 17
1k 0 6 1 NACA 0012 ¥ =0° 18
13, 16 0 6, 3 1 KACA 0015 ¥y =00 19
Ik V] [ b3 NACA 0012 Yav rangsj stability and wind axis| 20
17 [»] 3 1 NACA 0012 Yav range; stability and wind axis| 21
18 [¢] 3 1 Flat plate Yaw rangs; stability snd wind axis| 22
19 0 3 - Flat plate Yaw range; stability and wind axis| 23 .
20 [¢] 1.27 1 Flat plate Yav renge; stebility and wind axisi 24
21, 22 |-30 5.2, b5 1 NACA 001% ¢ =0° 25
23 -30 3.6 1 NACA 0012 ¥ = 00, £50 26
24 =30 3.6 2.85 KACA 23012 + = 09, i50 27
25 =30 3.6 4.2k NACA 23012 ¥ = 00, t5° 28 d
26 -5 2.1 1 NACA 0012 ¥ = 09, 150 29
26 | -u5 2.1 1 NACA 0012 v =00, 130; wing + atlerm 30
27 -5 2.1 2.5 NACA 23012 ¥ =00 i1
28 =45 2.1 4 NACA 23012 ¥ = 09, t5° 32
28 -4 2.1 b NACA 23012 * = 09, 50} wing + ailercn 33
29, 3¢ |-60 3, 15 1 NACA 0015 * = 0° 34
Tuft sketches
2 60 1.5 1 NACA 0012 i 35a
7 56 2.1 2.5 NACA 23012 - . 35
9 375 3 0.617 TLow-drag-type | Plain wing 350
9 375 3 0.617 Low-drag-typs | Wing + tip slab 354
13 6 6 5 NACA 23012 358 J—
27 -5 2.1 2.5 NACA 23012 38L
Comparison figures
Bffect of aspsct retio 36
Effect of taper ratio 37
Effect of high-1ift devices B8
Effect of tip modification 39
Yawed-wing 1lift-curve slope 40
Lift-curve slope for ewept winge 41
Comparison of measured and computed lift-curve slopes for swept wings L2 .
Comparison of measured and computed values of effective dihedral for swept wings k3

NATIONAL ADVIS(RY
COMMITTEE FOR AERCNAUTICS
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Fig. 2
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Figure 2.- Plan forms and dimensions of wing models.

el



NACA RM No. L7D23 Fig. 2 cont,
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Figure 2.~ Continued.
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Figure 2.- Continued.
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Figure 2.- Continued.
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Figure 2.- Continued.
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NACA RM No., L7D23 Fig. 3a

(a) 45° swept-forward wing.

Figure 3.- Swept wings mounted in test section of Langley 7- by
10-foot tunnel. Front view,
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(b) 60° swept-back wing with 60° swept—-forward outer panels.

Figure 3.- Concluded.
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Figure 4.- Variation of test and effective Reynolds number with dynamic
pressure and model chord for Langley 7- by 10-foot tunnel.
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Jet-boundary correction factor , aCx/Cfor 40/573C;

O
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Figure 5.- Jet-boundary correction factors for wings.
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Fig. 7 NACA RM No, L7D23
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Fig. 9 NACA RM No. L7D23

35S &
S+« 8
§.§ 0 -G D et T S
3N et
ST - 20 &
N K
. K
157 S
}é q"%
/Jﬁ 2§
) Y
Y Toicy ®oS
WO, ~
T . %3
s=og o =
52 0 x
I 3
<6 A 4
24 ° 3
a 15 -(;/
Na L
Y 20 - o,
“ &
3 /6 V4
S R :
« &
S
S ¢ T
<C
0 52
L1/ commie o s —|
4 |

Z 0 2 4 6 8 10
Lift coeffrcient,¢; -

Figure 9.- Aerodynamic characteristics of swept-back wings.
Aess = 80° A = 3 and 1.5; A = 1; NACA 0015 airfoil section;

models 3 ang 4.



9
3
S ]
3, bl o0t LA
3 BT - z 3
§ K § “ry =N
A 0 SO0 ] 2
x S N ot
§ .IZ$ - B
S )
e R
ﬁ 0iCs — .m:
T dc; '.04‘5 S .
3 Y | 3 bola | 0%tn fl 1o
- deq I X 511 ¢y
28 0 3 = 00!
L 5
24 5 o
S 28 -
k vl
L red 003 -
< - .
Sz M o0z [c;f*“f =
v ){ Q'f’ » Ji X‘g_
N / ’ 3
L
= 4 6 .
< . -
0 P -00! 4
T d HAT AL .
! G [ COTYR ) AomARCS
' | -002 I I O S A |
4 2 0 2 4 6 B W0 &2 A 2 0 2 A4 b6 B 0 =2
LIt coefiklent & Liff cosfficiant, Cr

Figure 10.- Aerodynamic characteristics of a swept-back wing. A /4 = 60%; A = 3.1;
A = 1; NACA 0012 ajrfoil section with tips cut off normal to leading edge; model 5.

$20LT "ON WY VOVN

0T ‘314




.

38
S
5§ 0 )
TS b
B
S c :
. QICx w § Yoo {ﬁi ]
ot = o LIPTTerpbgoln b d-o
8 - .
y 0 ‘%,
¥ . 3
¥
i ‘ &
(g L
26 P 0 id 00!
o a5 | [
I l'
“— s — il
3 ,
-
R L./"[
k™ 8 T
b
N L f 09)
_p- I4 f ! 1 I .." HO~
o - By
< o 0 -
o A DA Y T |
#* VNN o o
- o e 1 o al I |IJ [ i e
4 L& !
4 X 0 2 #A& & 8 10 A 2 0 2 4 & B8 |10
Lift coefficient ,&; Lift coefflcient , Cf,

Figure 11.- Aerodynamic characteristics of a swept wing. Ac/4 = +60%; A = 2.6; A = 1;

inboard 0.6"22 swept back 680°; outboard 0.4% swept forward 60%; NACA 0012 airfoil

section; model 6.

1T "84

g2ULT "oN WY VOVN




NACA RM No. L7D23 Fig, 12
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Fig. 13 NACA BRM No. L7D23
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Fig. 16 . NACA RM No. LTD23
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Fig. 17 NACA RM No., L7D23
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NACA RM No, L7D23 Fig, 18
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Fig. 19 NACA RM No. L7D23
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Figure 22,- Aerodynamic characteristics of an unswept wing at various angles of yaw.
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NACA RM No. LTD23
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Figure 23.- Aerodynamic characteristics of an unswept wing at various angles of yaw.
Aosy = 0% A = 3; A = ; flat-plate section; model 19,
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Fig. 25 NACA RM No, L7D23
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Figure 28.- Aerodynamic characteristics of a swept-forward wing. A, /4 —300; A = 3.6;
A= 4,24; NACA 23012 airfoil section; model 25,
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Fig., 31 NACA RM No. L7D23
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Figure 31.- Aerodynémié characteristics of a swept-forward wing.
A'c/4 = -46,6°; A = 2,1; A = 2.5; NACA 23012 airfoil section;

model 27.
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Figure 32,~ Aerodynamic characteristics of a swept-forward wing. Ao /4 = -450; A = 2.1;
A = 3.88; NACA 23012 airfoil section; model 28.
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NACA RM No. L7D23 Fig. 34
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Fig. 35¢ ) NACA RM No. .L7D23

(c) Ac 7% 3'7.50; A = 3; A = 0.817; low-drag-type airfoil section;
model 9.
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Models 2 and 9.
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Fig, 39 NACA RM No, L7D23
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Figure 39.- Effect of tip modification on aerodynamic characteristics
of swept wings. Models 1, 5, and 6.
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Figure 40.- Variation of lift-curve slope with angle of yaw for various
wings.



[0

' (de
, ! Oa}
| T 130
6 Ty
Cl i
el 160

Q
D
\ﬁs

0

) 20) 40) Al)
L A TS (@1

A/c)

Figure 41.- Theoretical variation of lift-curve slope with aspect ratio and sweep angle.

Q¢

80

1% *81d

£8ALT "ON INY VOVN




1.0
a Unfapered

08 A Tapered
S
5y 06
9
S 2
Eﬂ 04 A
; <
02

Q

O W 04 06 08 10
CLy, » cCOMputed

Figure 42.- Comparison of measured and computed values of CL . Flagged symbols
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denote swept-forward wings.
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